Product Code Database
Example Keywords: data and -wheels $84-127
barcode-scavenger
   » » Wiki: Nth Root
Tag Wiki 'Nth Root'.
Tag

In , an th root of a is a number which, when of , yields : r^n = \underbrace{r \times r \times \dotsb \times r}_{n\text{ factors}} = x.

The is called the index or degree, and the number of which the root is taken is the radicand. A root of degree 2 is called a and a root of degree 3, a . Roots of higher degree are referred by using , as in fourth root, twentieth root, etc. The computation of an th root is a root extraction.

For example, is a square root of , since , and is also a square root of , since .

The th root of is written as \sqrtn{x} using the \sqrt{\phantom x}. The square root is usually written as , with the degree omitted. Taking the th root of a number, for fixed , is the inverse of raising a number to the th power, and can be written as a fractional exponent:

\sqrtn{x} = x^{1/n}.

For a positive real number , \sqrt{x} denotes the positive square root of and \sqrtn{x} denotes the positive real th root. A negative real number has no real-valued square roots, but when is treated as a complex number it has two square roots, and , where is the .

In general, any non-zero has distinct complex-valued th roots, equally distributed around a complex circle of constant absolute value. (The th root of is zero with , and this circle degenerates to a point.) Extracting the th roots of a complex number can thus be taken to be a multivalued function. By convention the of this function, called the principal root and denoted , is taken to be the th root with the greatest real part and in the special case when is a negative real number, the one with a positive . The principal root of a positive real number is thus also a positive real number. As a function, the principal root is continuous in the whole , except along the negative real axis.

An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd

(2025). 9788131800133, Laxmi Publications. .
or a radical.
(1986). 9780130212702, Prentice-Hall. .
Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression, and if it contains no transcendental functions or transcendental numbers it is called an algebraic expression.

Roots are used for determining the radius of convergence of a with the . The th roots of 1 are called roots of unity and play a fundamental role in various areas of mathematics, such as , theory of equations, and Fourier transform.


History
An archaic term for the operation of taking nth roots is radication.


Definition and notation
An th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x:

r^n = x.

Every positive x has a single positive nth root, called the , which is written \sqrtn{x}. For n equal to 2 this is called the principal square root and the n is omitted. The nth root can also be represented using as x.

For even values of n, positive numbers also have a negative nth root, while negative numbers do not have a real nth root. For odd values of n, every negative number x has a real negative nth root. For example, −2 has a real 5th root, \sqrt5{-2} = -1.148698354\ldots but −2 does not have any real 6th roots.

Every non-zero number x, real or , has n different complex number nth roots. (In the case x is real, this count includes any real nth roots.) The only complex root of 0 is 0.

The nth roots of almost all numbers (all integers except the nth powers, and all rationals except the quotients of two nth powers) are irrational. For example,

\sqrt{2} = 1.414213562\ldots

All nth roots of rational numbers are , and all nth roots of integers are algebraic integers.

The term "surd" traces back to (), who referred to rational and irrational numbers as "audible" and "inaudible", respectively. This later led to the Arabic word أصم (asamm, meaning "deaf" or "dumb") for "irrational number" being translated into Latin as surdus (meaning "deaf" or "mute"). Gerard of Cremona (), (1202), and then (1551) all used the term to refer to "unresolved irrational roots", that is, expressions of the form \sqrtn{r}, in which n and r are integer numerals and the whole expression denotes an irrational number. Irrational numbers of the form \pm\sqrt{a}, where a is rational, are called "pure quadratic surds"; irrational numbers of the form a \pm\sqrt{b}, where a and b are rational, are called mixed quadratic surds.


Square roots
A square root of a number x is a number r which, when squared, becomes x:

r^2 = x.

Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:

\sqrt{25} = 5.

Since the square of every real number is nonnegative, negative numbers do not have real square roots. However, for every negative real number there are two square roots. For example, the square roots of −25 are 5 i and −5 i, where represents a number whose square is .


Cube roots
A cube root of a number x is a number r whose cube is x:

r^3 = x.

Every real number x has exactly one real cube root, written \sqrt3{x}. For example,

\begin{align} \sqrt3{8} &= 2\\ \sqrt3{-8} &= -2. \end{align}

Every real number has two additional cube roots.


Identities and properties
Expressing the degree of an nth root in its exponent form, as in x^{1/n}, makes it easier to manipulate powers and roots. If a is a non-negative real number,

\sqrtn{a^m} = (a^m)^{1/n} = a^{m/n} = (a^{1/n})^m = (\sqrtna)^m.

Every non-negative number has exactly one non-negative real nth root, and so the rules for operations with surds involving non-negative radicands a and b are straightforward within the real numbers:

\begin{align}

          \sqrt[n]{ab} &= \sqrt[n]{a} \sqrt[n]{b} \\
 \sqrt[n]{\frac{a}{b}} &= \frac{\sqrt[n]{a}}{\sqrt[n]{b}}
     
\end{align}

Subtleties can occur when taking the nth roots of negative or . For instance:

\sqrt{-1}\times\sqrt{-1} \neq \sqrt{-1 \times -1} = 1,\quad

but, rather,

\quad\sqrt{-1}\times\sqrt{-1} = i \times i = i^2 = -1.

Since the rule \sqrtn{a} \times \sqrtn{b} = \sqrtn{ab} strictly holds for non-negative real radicands only, its application leads to the inequality in the first step above.


Simplified form of a radical expression
A is said to be in simplified form if no factor of the radicand can be written as a power greater than or equal to the index; there are no fractions inside the radical sign; and there are no radicals in the denominator.
(2025). 9780840064219, Cengage Learning. .

For example, to write the radical expression \textstyle \sqrt{32/5} in simplified form, we can proceed as follows. First, look for a perfect square under the square root sign and remove it:

Next, there is a fraction under the radical sign, which we change as follows:

4 \sqrt{\frac{2}{5}} = \frac{4 \sqrt{2}}{\sqrt{5}}

Finally, we remove the radical from the denominator as follows:

\frac{4 \sqrt{2}}{\sqrt{5}} = \frac{4 \sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{4 \sqrt{10}}{5} = \frac{4}{5}\sqrt{10}

When there is a denominator involving surds it is always possible to find a factor to multiply both numerator and denominator by to simplify the expression. For instance using the factorization of the sum of two cubes:

 \frac{1}{\sqrt[3]{a} + \sqrt[3]{b}} =
 \frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{\left(\sqrt[3]{a} + \sqrt[3]{b}\right)\left(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}\right)} =
 \frac{\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}}{a + b} .
     

Simplifying radical expressions involving can be quite difficult. In particular, denesting is not always possible, and when possible, it may involve advanced . Moreover, when complete denesting is impossible, there is no general such that the equality of two numbers can be tested by simply looking at their canonical expressions.

For example, it is not obvious that

\sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2}.

The above can be derived through:

\sqrt{3 + 2\sqrt{2}} = \sqrt{1 + 2\sqrt{2} + 2} = \sqrt{1^2 + 2\sqrt{2} + \sqrt{2}^2} = \sqrt{\left(1 + \sqrt{2}\right)^2} = 1 + \sqrt{2}

Let r=p/q, with and coprime and positive integers. Then \sqrtnr = \sqrtn{p}/\sqrtn{q} is rational if and only if both \sqrtn{p} and \sqrtn{q} are integers, which means that both and are nth powers of some integer.


Infinite series
The radical or root may be represented by the :

(1+x)^{s/t} = \sum_{n=0}^\infty \frac{x^n}{n!} \prod_{k=0}^{n-1} \left(\frac st - k\right)

with |x|<1. This expression can be derived from the .


Computing principal roots

Using Newton's method
The th root of a number can be computed with Newton's method, which starts with an initial guess and then iterates using the recurrence relation

x_{k+1} = x_k-\frac{x_k^n-A}{nx_k^{n-1}}

until the desired precision is reached. For computational efficiency, the recurrence relation is commonly rewritten

x_{k+1} = \frac{n-1}{n}\,x_k+\frac{A}{n}\,\frac 1{x_k^{n-1}}.

This allows to have only one , and to compute once for all the first factor of each term.

For example, to find the fifth root of 34, we plug in and (initial guess). The first 5 iterations are, approximately:

(All correct digits shown.)

The approximation is accurate to 25 decimal places and is good for 51.

Newton's method can be modified to produce various generalized continued fractions for the nth root. For example,

 \sqrt[n]{z} = \sqrt[n]{x^n+y} = x+\cfrac{y} {nx^{n-1}+\cfrac{(n-1)y} {2x+\cfrac{(n+1)y} {3nx^{n-1}+\cfrac{(2n-1)y} {2x+\cfrac{(2n+1)y} {5nx^{n-1}+\cfrac{(3n-1)y} {2x+\ddots}}}}}}.
     


Digit-by-digit calculation of principal roots of decimal (base 10) numbers
Building on the digit-by-digit calculation of a square root, it can be seen that the formula used there, x(20p + x) \le c, or x^2 + 20xp \le c, follows a pattern involving Pascal's triangle. For the nth root of a number P(n,i) is defined as the value of element i in row n of Pascal's Triangle such that P(4,1) = 4, we can rewrite the expression as \sum_{i=0}^{n-1}10^i P(n,i)p^i x^{n-i}. For convenience, call the result of this expression y. Using this more general expression, any positive principal root can be computed, digit-by-digit, as follows.

Write the original number in decimal form. The numbers are written similar to the algorithm, and, as in long division, the root will be written on the line above. Now separate the digits into groups of digits equating to the root being taken, starting from the decimal point and going both left and right. The decimal point of the root will be above the decimal point of the radicand. One digit of the root will appear above each group of digits of the original number.

Beginning with the left-most group of digits, do the following procedure for each group:

  1. Starting on the left, bring down the most significant (leftmost) group of digits not yet used (if all the digits have been used, write "0" the number of times required to make a group) and write them to the right of the remainder from the previous step (on the first step, there will be no remainder). In other words, multiply the remainder by 10^n and add the digits from the next group. This will be the current value c.
  2. Find p and x, as follows:
    • Let p be the part of the root found so far, ignoring any decimal point. (For the first step, p = 0 and 0^0 = 1).
    • Determine the greatest digit x such that y \le c.
    • Place the digit x as the next digit of the root, i.e., above the group of digits you just brought down. Thus the next p will be the old p times 10 plus x.
  3. Subtract y from c to form a new remainder.
  4. If the remainder is zero and there are no more digits to bring down, then the algorithm has terminated. Otherwise go back to step 1 for another iteration.


Examples
Find the square root of 152.2756.

          1  2. 3  4 
       /
     \/  01 52.27 56          (Results)    (Explanations)
    
         01                   x = 1        10·1·0·'''1''' + 10·2·0·'''1'''     ≤      1   <   10·1·0·2   + 10·2·0·2
         01                   y = 1        y = 10·1·0·1   + 10·2·0·1   =  1 +    0   =     '''1'''
         00 52                x = 2        10·1·1·'''2''' + 10·2·1·'''2'''     ≤     52   <   10·1·1·3   + 10·2·1·3
         00 44                y = 44       y = 10·1·1·2   + 10·2·1·2   =  4 +   40   =    '''44'''
            08 27             x = 3        10·1·12·'''3''' + 10·2·12·'''3'''   ≤    827   <   10·1·12·4  + 10·2·12·4
            07 29             y = 729      y = 10·1·12·3  + 10·2·12·3  =  9 +  720   =   '''729'''
               98 56          x = 4        10·1·123·'''4''' + 10·2·123·'''4''' ≤   9856   <   10·1·123·5 + 10·2·123·5
               98 56          y = 9856     y = 10·1·123·4 + 10·2·123·4 = 16 + 9840   =  '''9856'''
               00 00
     

Algorithm terminates: Answer is 12.34

Find the cube root of 4192 truncated to the nearest thousandth.

        1   6.  1   2   4
 3  /
  \/  004 192.000 000 000          (Results)    (Explanations)
    
      004                          x = 1        10·1·0·'''1'''    +  10·3·0·'''1'''   + 10·3·0·'''1'''    ≤          4  <  10·1·0·2     + 10·3·0·2    + 10·3·0·2
      001                          y = 1        y = 10·1·0·1   + 10·3·0·1   + 10·3·0·1   =   1 +      0 +          0   =          '''1'''
      003 192                      x = 6        10·1·1·'''6'''    +  10·3·1·'''6'''   + 10·3·1·'''6'''    ≤       3192  <  10·1·1·7     + 10·3·1·7    + 10·3·1·7
      003 096                      y = 3096     y = 10·1·1·6   + 10·3·1·6   + 10·3·1·6   = 216 +  1,080 +      1,800   =      '''3,096'''
          096 000                  x = 1        10·1·16·'''1'''   + 10·3·16·'''1'''   + 10·3·16·'''1'''   ≤      96000  <  10·1·16·2   + 10·3·16·2   + 10·3·16·2
          077 281                  y = 77281    y = 10·1·16·1  + 10·3·16·1  + 10·3·16·1  =   1 +    480 +     76,800   =     '''77,281'''
          018 719 000              x = 2        10·1·161·'''2'''  + 10·3·161·'''2'''  + 10·3·161·'''2'''  ≤   18719000  <  10·1·161·3  + 10·3·161·3  + 10·3·161·3
              015 571 928          y = 15571928 y = 10·1·161·2 + 10·3·161·2 + 10·3·161·2 =   8 + 19,320 + 15,552,600   = '''15,571,928'''
              003 147 072 000      x = 4        10·1·1612·'''4''' + 10·3·1612·'''4''' + 10·3·1612·'''4''' ≤ 3147072000  <  10·1·1612·5 + 10·3·1612·5 + 10·3·1612·5
     

The desired precision is achieved. The cube root of 4192 is 16.124...


Logarithmic calculation
The principal nth root of a positive number can be computed using . Starting from the equation that defines r as an nth root of x, namely r^n=x, with x positive and therefore its principal root r also positive, one takes logarithms of both sides (any base of the logarithm will do) to obtain

n \log_b r = \log_b x \quad \quad \text{hence} \quad \quad \log_b r = \frac{\log_b x}{n}.

The root r is recovered from this by taking the :

r = b^{\frac{1}{n}\log_b x}.

(Note: That formula shows b raised to the power of the result of the division, not b multiplied by the result of the division.)

For the case in which x is negative and n is odd, there is one real root r which is also negative. This can be found by first multiplying both sides of the defining equation by −1 to obtain |r|^n = |x|, then proceeding as before to find | r|, and using .


Geometric constructibility
The ancient Greek mathematicians knew how to use compass and straightedge to construct a length equal to the square root of a given length, when an auxiliary line of unit length is given. In 1837 proved that an nth root of a given length cannot be constructed if n is not a power of 2.


Complex roots
Every other than 0 has n different nth roots.


Square roots
The two square roots of a complex number are always negatives of each other. For example, the square roots of are and , and the square roots of are

\tfrac{1}{\sqrt{2}}(1 + i) \quad\text{and}\quad -\tfrac{1}{\sqrt{2}}(1 + i).

If we express a complex number in , then the square root can be obtained by taking the square root of the radius and halving the angle:

\sqrt{re^{i\theta}} = \pm\sqrt{r} \cdot e^{i\theta/2}.

A principal root of a complex number may be chosen in various ways, for example

\sqrt{re^{i\theta}} = \sqrt{r} \cdot e^{i\theta/2}

which introduces a in the along the positive real axis with the condition , or along the negative real axis with .

Using the first(last) branch cut the principal square root \scriptstyle \sqrt z maps \scriptstyle z to the half plane with non-negative imaginary(real) part. The last branch cut is presupposed in mathematical software like or .


Roots of unity
The number 1 has n different nth roots in the complex plane, namely

1,\;\omega,\;\omega^2,\;\ldots,\;\omega^{n-1},

where

\omega = e^\frac{2\pi i}{n} = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right).

These roots are evenly spaced around the in the complex plane, at angles which are multiples of 2\pi/n. For example, the square roots of unity are 1 and −1, and the fourth roots of unity are 1, i, −1, and -i.


nth roots
Every complex number has n different nth roots in the complex plane. These are

\eta,\;\eta\omega,\;\eta\omega^2,\;\ldots,\;\eta\omega^{n-1},

where η is a single nth root, and 1,  ωω, ...  ω are the nth roots of unity. For example, the four different fourth roots of 2 are

\sqrt4{2},\quad i\sqrt4{2},\quad -\sqrt4{2},\quad\text{and}\quad -i\sqrt4{2}.

In , a single nth root may be found by the formula

\sqrtn{re^{i\theta}} = \sqrtn{r} \cdot e^{i\theta/n}.

Here r is the magnitude (the modulus, also called the ) of the number whose root is to be taken; if the number can be written as a+bi then r=\sqrt{a^2+b^2}. Also, \theta is the angle formed as one pivots on the origin counterclockwise from the positive horizontal axis to a ray going from the origin to the number; it has the properties that \cos \theta = a/r, \sin \theta = b/r, and \tan \theta = b/a.

Thus finding nth roots in the complex plane can be segmented into two steps. First, the magnitude of all the nth roots is the nth root of the magnitude of the original number. Second, the angle between the positive horizontal axis and a ray from the origin to one of the nth roots is \theta / n, where \theta is the angle defined in the same way for the number whose root is being taken. Furthermore, all n of the nth roots are at equally spaced angles from each other.

If n is even, a complex number's nth roots, of which there are an even number, come in pairs, so that if a number r1 is one of the nth roots then r2 = − r1 is another. This is because raising the latter's coefficient −1 to the nth power for even n yields 1: that is, (− r1) = (−1) × r1 = r1.

As with square roots, the formula above does not define a continuous function over the entire complex plane, but instead has a at points where θ /  n is discontinuous.


Solving polynomials
It was once that all polynomial equations could be solved algebraically (that is, that all roots of a could be expressed in terms of a finite number of radicals and elementary operations). However, while this is true for third degree polynomials () and fourth degree polynomials (), the Abel–Ruffini theorem (1824) shows that this is not true in general when the degree is 5 or greater. For example, the solutions of the equation

x^5 = x + 1

cannot be expressed in terms of radicals. ( cf. )


Proof of irrationality for non-perfect nth power x
Assume that \sqrtn{x} is rational. That is, it can be reduced to a fraction \frac{a}{b}, where and are integers without a common factor.

This means that x = \frac{a^n}{b^n}.

Since x is an integer, a^nand b^nmust share a common factor if b \neq 1. This means that if b \neq 1, \frac{a^n}{b^n} is not in simplest form. Thus b should equal 1.

Since 1^n = 1 and \frac{n}{1} = n, \frac{a^n}{b^n} = a^n.

This means that x = a^n and thus, \sqrtn{x} = a. This implies that \sqrtn{x} is an integer. Since is not a perfect th power, this is impossible. Thus \sqrtn{x} is irrational.


See also


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time